Logo Lab-STICCFrom sensors to knowledge: Communicate and decide


The CODES research team designs and develops channel and source coding solutions for emerging digital communication and storage systems. The primary challenge and driver at the heart of our research work is to propose codes and algorithms operating close to the fundamental theoretical limits in error-correction and source coding and simultaneously adressing the need of practical applications either in terms of systems specifications (e.g. short packets, distributed network architectures, uncoordinated communications and network access, etc) or hardware constraints (energy consumption, ultra-high-rate transmission, non-faulty computations, etc).

The research investigations are at the crossroads of signal processing, discrete mathematics, information theory, circuits and systems, and more recently machine learning.

Example of applications include next-generation wireless networks (5G and beyond) and access as well as long-haul fiber-optical networks, but also emerging technologies and applications such as DNA storage systems or free-space space-earth satellite communications.

Examples of recent research topics

  • Towards Tb/s turbo-decoding (H2020 project EPIC)
  • Non-binary LDPC code design (Lab-STICC project home)
  • Non-binary modulation and coding for sensors networks and IoT (ANR project QCSP)
  • Coding for DNA storage (CominLabs project dnarXiv)
  • Coding for fault-tolerant systems (ANR project EF-FECtive)
  • Distributed source coding (CominLabs project InterCom)
  • Learning on compressed data (CominLabs chair IoTAD-CEO)


High-data rate channel coding, energy-efficient channel coding, non-binary coding, coded modulation, low-latency coding, coding for fiber-optical transmission, low-complexity decoding algorithms, distributed source coding, coding for DNA storage, NOMA communications

Les dernieres infos

Special session "Full-duplex communications for 5G & Beyond and IoT applications" - ATC Conference


  As part of the UBO / IBNM chair of excellence CyberIoT on the physical layer security where the Lab-STICC and the LMBA are involved, a special session on "Full-duplex communications for 5G & Beyond and IoT applications" has been proposed at the Int…

Read more

View all