Logo Lab-STICCDes capteurs à la connaissance : Communiquer et décider

OSE

Observations Signal & Environnement

Contact : Abdesslam BENZINOU

Contexte et objectifs

Pour répondre aux défis environnementaux liés aux changements climatiques et à la perte de biodiversité auxquels la société est confrontée, des efforts considérables sont consentis depuis plusieurs décennies pour accroître la collecte de données observationnelles de l’environnement (signaux, images et séries temporelles). Au niveau mondial, plus de 90% des données environnementales ont été générées au cours des trois dernières années. Dans ce contexte, les techniques d’intelligence artificielle [1] (IA) et en particulier les sciences de la donnée (« data science ») et l’apprentissage automatique (ou « machine learning ») ont un rôle majeur à jouer dans l’analyse et l’exploitation des données/observations environnementales. Le développement de ces technologies permet d’accomplir automatiquement des tâches cognitives de perception, de compréhension et de décision. Il s’agit in fine d’apporter un accompagnement auprès des acteurs (ONG, décideurs politiques, société civile, secteur privé) pour un impact plus efficace sur l’environnement et sur les activités humaines. OSE se positionne dans ce continuum entre la recherche méthodologique en traitement du signal & IA et les applications d’intérêt pour l’environnement en mettant l’accent sur la télédétection multimodale de l’environnement marin : i.e. la télédétection océanique (images satellitaires), le monitoring de l’environnement marin (images aériennes, données GNSS, ARGOS, AIS, etc.) et sous-marin (acoustique passive, images vidéo sous-marines).

 

Alors que les technologies d’IA semblent atteindre une certaine maturité, les performances d’une tâche d’automatisation dépendent beaucoup de la problématique à résoudre, de la qualité du jeu de données reçu et des algorithmes apprenants. Une des préoccupations de notre équipe concerne l’amélioration de la performance des algorithmes d’IA par la prise en compte approfondie de la nature des phénomènes dont on cherche à extraire de l’information (sans toutefois perdre la capacité de généralisation des outils développés à d’autre cas d’usage similaire). Trois aspects de l’interface entre IA et monitoring de l’environnement marin sont adressés : IA & physique, IA & robustesse et IA & problèmes inverses. Cela passe, par exemple, par l’incorporation de la physique sous-jacente aux observations dans l’apprentissage de la représentation optimale en vue de la réalisation de la tâche dédiée. Il peut également être souligné les recherches de l’équipe sur la robustesse et l’adaptabilité des algorithmes apprenants face aux évènements rares, aux données manquantes et/ou incomplètes et à la forte variabilité naturelle dans l’information environnementale. Le troisième aspect correspond à essayer d’utiliser des stratégies d’IA, à partir de grands jeux de données, pour la résolution de problèmes inverses environnementaux (interpolation de données, reconnaissance de cibles, inversion de signaux géophysiques, réduction d'information, etc.). L’objectif est le plus souvent d’estimer l’état caché des systèmes ainsi que de quantifier des incertitudes liées aux processus sous-jacents. 

Site Web scheme AnDA CME L96 2nd phase MAFALDA Tandeo

 Exemples de travaux

  • Apprentissage de solvers et modèles variationnels pour l'assimilation de données et la reconstruction de dynamiques géophysiques à la surface de l’océan.
  • Pondération des simulations climatiques, en utilisant des approches basées sur les données, afin de mieux caractériser les projections climatiques futures.
  • Reconnaissance d'objets 3D basée sur le deep-learning pour l'identification automatique d'espèces benthiques.
  • Suivi par acoustique passive des cétacés dans l'océan Indien à l'aide d'un glider acoustique.
  • Reconnaissance d'espèces de poissons dans des images vidéo sous-marines.

 

Collaborations

Entreprises : Thales, NavalGroup, CLS, Eodyn, Actimar, Hytech-imaging.

Institutions : CNES, DGA, IFREMER, IUEM, INRIA, Météo France, Mercator Ocean, IRISPACE, EUR ISblue, SHOM, FEM.

Académiques : GIPSA, Marbec, Sorbonne Univ, UCLA (Computational and Applied Mathematics group), Univ. of Washington (Applied Phys. Lab., Applied Math. Dept), Australian Antarctic Division, Barcelona Supercomputer Center, NERSC, Univ. of Dalhousie (Institute of Big Data Analytics), IMEDEA (Espagne), RIKEN (Japon), Univ. Laval (Canada), ETH Zurich, Univ. Buenos Aires (CIMA, Argentine).

GDR : GDR ISIS.

 

 [1] https://www.inria.fr/actualite/actualites-inria/livre-blanc-sur-l-intelligence-artificielle

Actualités
Les dernieres infos

Modélisation des Océans dans le cadre du projet MEDIATION (PPR Océan & climat), par l'équipe OSE du pôle IA & Océan

OSE   SUPPORT  

3 enseignants chercheurs de l'équipe OSE du pôle IA & Océan, sont impliqués dans le projet MEDIATION du Programme Prioritaire de Recherche Océan & Climat. Via ce projet, ils ont contribué à la modélisation des océans. L'objectif de la modélisation de…

Lire la suite

Fête de la Science : le Lab-STICC y participera 8 au 10 octobre 2024

SHAKER   OSE   ROBEX   COMMEDIA   SUPPORT  

Le Lab-STICC sera présent aux journées fêtes de la Science : à la médiathèque de Quimperlé - le 8/10/2024 à 18 h 30 Le pôle INTERACTION, et plus particulièrement Pierre De Loor propose une Conférence "L'intelligence artificielle, amie ou ennemie ?"…

Lire la suite

Tout voir