Location : IMT Atlantique (Room C02-113)
Visio : https://imt-atlantique.zoom.us/j/95590634556
Lecturer : Paul BOUQUIN, PIM post-doc
Abstract :
"In spin transfer torque random access memories (STTMRAM), the magnetization of a thin ferromagnetic layer is reversed under the action of a polarized spin current. We study the switching path that the STTMRAM undergo. The first results are micromagnetic simulations of the switching. We study the impact of the diameter of the device on the switching path. From these numerical calculations we predict for devices between 20 and 100 nm at room temperature a switching path composed of a coherent phased followed by a domain wall nucleation and motion. It is the switching path expected in our forthcoming measurements. The domain wall dynamics observed in the micromagnetic simulations present complex Walker oscillations that are not understood from the domain wall models of the state of the art. Therefore, I present a more complete model for the domain wall dynamics within a STTMRAM which takes into account the exact geometry of the system. In this geometry the elasticity terms act as a new effective field called the stretch field. The stretch field plays a key role in the wall dynamics and explains the complex Walker oscillations. The conditions under which these effects can be measured are also predicted by our new model. Our measurements are performed on state-of-the-art STTMRAM based on perpendicular magnetic tunnel junction. The diameter of the devices varies between 26 and 200 nm. We characterize our devices by magnetometry, ferromagnetic resonance and electrical time-resolved measurements of the switching path. The switching path in our time-resolved measurements presents the signatures of an initial coherent phase and of a domain wall motion. This is in agreement with the simulated switching path. The complex Walker oscillations predicted by our models are measured in specific devices with an ultrasoft free layer, but not in our most standard stack. This highlight the interest of our analytical models for understanding the behavior of application-oriented devices."
Presentation : 2021 10 28 Séminaire Paul BOUQUIN