Effets optiques et magnoniques dans des hétérostructures fonctionnelles multicouches

Yuliya Dadoenkova

Enseignante-chercheuse contractuelle, ENIB, Lab-STICC – Équipe NSF

HDR soutenue le 26/01/2022

PARCOURS PROFESSIONNEL

ACTIVITÉS DE RECHERCHE

Principaux domaines de recherche

- 1. Effets non-spéculaires dans des hétérostructures fonctionnelles
- 2. Cristaux photoniques-magnoniques
- 3. Amplification de plasmons polaritons de surface

Parcours professionnel

Née à Donetsk (URSS) en 1987

FORMATION UNIVERSITAIRE

- Université Nationale de Donetsk (Ukraine) Master ès Sciences obtenu en 2008
- Institut Physique et Technologique de Donetsk, Académie des Sciences (Ukraine) Doctorat (Ph.D) obtenu en 2013, validé en 2014
 « Effets magnéto-optiques dans des structures photoniques magnétiques et optiquement non-linéaires »

Directeur de thèse : Pr. Igor Lyubchanskii

APRÈS LA THÈSE

- Institut Physique et Technologique de Donetsk, Académie des Sciences (Ukraine)
 - Chercheuse Junior (2011-2014)
- Université d'État de Novgorod
 - Chercheuse contractuelle (2015-2017)
- École Nationale d'Ingénieurs de Brest (France)
- Chercheuse post-doctorale (2019-2020)
- Enseignante-chercheuse contractuelle (2021- present)

• Université d'État d'Ulyanovsk (Russie)

- Chercheuse contractuelle (2014-2019)

Principaux domaines de recherche

LIGNE DIRECTRICE

Modélisation des interactions d'ondes électromagnétiques ou d'ondes de spins avec des structures fonctionnelles pouvant servir à la conception de dispositifs photoniques et/ou magnoniques dans diverses gammes de fréquences (visible, proche IR, THz)

TECHNIQUES

- Calculs et modélisations analytiques
- Calculs numériques
 MATLAB
- Formalisme des matrices de transfert
- Maple
- COMSOL Multiphysics

- Méthodes perturbatives (fonctions de Green)
- Formalisme des ondes couplées

PRODUCTION SCIENTIFIQUE

- ✓ Articles de revues à comité de lecture : 50
- ✓ Chapitres de livre : 3

- 4 - La

PRINCIPAUX DOMAINES DE RECHERCHE

- EFFETS MAGNÉTO-OPTIQUES LINÉAIRES (effets Kerr et Faraday)
- EFFETS NON-SPÉCULAIRES (DÉCALAGES DE FAISCEAUX) (effets Goos-Hänchen et Imbert-Fedorov)
- CRISTAUX PHOTONIQUES ET/OU MAGNONIQUES COMPLEXES
 (incluant des milieux supraconducteurs, magnétiques, électro-optiques...)
- GUIDES D'ONDES MAGNÉTIQUES
- PLASMONIQUE (plasmons polaritons de surface)
- MAGNONIQUE (ondes de spin)
- EFFETS OPTIQUES NON-LINÉAIRES (diffraction acousto-optique, diffusion Brillouin)

1. Effets non-spéculaires

1. Effets non-spéculaires – lumière

1. Effets non-spéculaires – ondes de spin

1. Effets non-spéculaires – ondes de spin

2. Cristaux photoniques-magnoniques

2. Cristaux photoniques-magnoniques

3. Amplification de plasmons polaritons de surface par un courant électrique

COUCHE SEMI-CONDUCTRICE + GRAPHÈNE LE-PASSAGE

Le champ électrique du PPS module l'amplitude du courant électrique

Influence mutuelle du champ électrique du PPS et du courant électrique \rightarrow dépendance conjointe de leurs amplitudes

Amplification du PPS : la vitesse de phase du PPS doit être égale à la vitesse de dérive des porteurs de charge (condition de synchronisme)

- PPS lent : couche semiconductrice
- Électrons rapides : graphène, nanotube de carbone

Dispersion spectrale de (a) vitesse de phase V_{rb} du PPS vitesse de groupe V_a du PPS vitesse V_0 du courant de dérive constante de propagation β' du PPS (b) coefficient d'amplification α valeur absolue du coefficient de perte $|\beta''|$

Cercle : $V_{ph} = V_0$ (synchronisme)

Zone verte : régime d'amplification $\alpha > |\beta''|$ sur gamme de largeur $\Delta \omega_{\alpha} \approx 0.08.10^{12}$ rad/s

Zone hachurée : régime d'amplification résonante en cavité distribuée (voir transparent suivant)

I. O. Zolotovskii et al., Ann. Phys. 529, 1700037 (2017)

3. Amplification de plasmons polaritons de surface par un courant électrique

COUCHE SEMI-CONDUCTRICE + GRAPHÈNE : AMPLIFICATION RÉSONANTE

electron

flux

Le champ électrique du PPS module l'amplitude du courant électrique

Influence mutuelle du champ électrique du PPS et du courant électrique → dépendance conjointe de leurs amplitudes

Amplification du PPS : la vitesse de phase du PPS doit être égale à la vitesse de dérive des porteurs de charge (<u>condition de synchronisme</u>)

- → <u>PPS lent</u> : couche semiconductrice
- → <u>Électrons rapides</u> : graphène, nanotube

Évolution du coefficient de transmission T avec la fréquence angulaire ω et la

période Λ

forward SPI

backward SPP

Application potentielle : laser à plasmons polaritons de surface (spaser)

Phys. Rev. A **97**, 053828 (2018) Ann. Phys. (Berlin) **530**, 1800197 (2018)

Merci pour votre attention !

MES COLLABORATEURS :

Florian BENTIVEGNA (Lab-STICC, ENIB) Yann BOUCHER (FOTON, ENIB) Igor GLUKHOV (ENIB + U. d'Etat d'Ulyanovsk, Russie) Maciej KRAWCZYK (U. De Poznan, Pologne) Igor LYUBCHANSKII (Institut Physique et Technologique de Donetsk, Ukraine)

Igor ZOLOTOVSKII[†] (U. d'Etat d'Ulyanovsk, Russie) Sergey MOISEEV (U. d'Etat d'Ulyanovsk, Russie) Dmitry SANNIKOV (U. d'Etat d'Ulyanovsk, Russie) Mirza BICHURIN (U. d'Etat de Novgorod, Russie)

2. Cristaux photoniques-magnoniques

4. Guides d'ondes magnétiques couplés

Quatre configurations magnétiques :

- deux parallèles

 (« haut-haut » et « bas-bas »)

 deux anti-parallèles
- (« haut-bas » et « bas-haut »)

<u>Idée</u> : contrôler les supermodes du système couplé en commutant l'aimantation dans l'un des guides d'ondes

Dispersion modale de la constante de couplage ($\chi = \pi/(2L_c)$, L_c est la distance sur laquelle la puissance transportée par un guide est totalement transférée dans l'autre) pour h =0,75 µm et d = h/4

Y. G. Boucher et al., IEEE J. Quant. Electron. 54, 6200208 (2018)

Efficacité de couplage *vs* longueur d'interaction pour le mode TE dans les configurations parallèle ↑↑ et antiparallèle ↑↓ et ↓↑

Région jaune : longueur d'interaction pour laquelle un excellent contraste de transmission peut être obtenu entre les configurations $\uparrow\uparrow$ et $\uparrow\downarrow$, $\downarrow\uparrow$

